The link between the shape of the Aubry - Mather sets and their Lyapunov exponents

نویسنده

  • M.-C Arnaud
چکیده

We consider the irrational Aubry-Mather sets of an exact symplectic monotone C 1 twist map, introduce for them a notion of " C 1-regularity " (related to the notion of Bouligand paratingent cone) and prove that : • a Mather measure has zero Lyapunov exponents iff its support is almost everywhere C 1-regular; • a Mather measure has non zero Lyapunov exponents iff its support is almost everywhere C 1-irregular; • an Aubry-Mather set is uniformly hyperbolic iff it is everywhere non regular; • the Aubry-Mather sets which are close to the KAM invariant curves, even if they may be non C 1-regular, are not " too irregular " (i.e. have small paratingent cones). The main tools that we use in the proofs are the so-called Green bundles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Rigorous Partial Justification of Greene ' Scriterion 1

We prove several theorems that lend support for Greene's criterion for existence or not of invariant circles in twist maps. In particular, we show that some of the implications of the criterion are correct when the Aubry-Mather sets are smooth invariant circles or uniformly hyperbolic. We also suggest a simple modiication that can work in the case that the Aubry-Mather sets have non-zero Lyapun...

متن کامل

Hyperbolicity for conservative twist maps of the 2-dimensional annulus

These are notes for a minicourse given at Regional Norte UdelaR in Salto, Uruguay for the conference CIMPA Research School Hamiltonian and Lagrangian Dynamics. We will present Birkhoff and Aubry-Mather theory for the conservative twist maps of the 2-dimensional annulus and focus on what happens close to the Aubry-Mather sets: definition of the Green bundles, link between hyperbolicity and shape...

متن کامل

un 2 00 5 Symplectic aspects of Aubry - Mather theory 1

On montre que les ensembles d'Aubry et de Mañé introduits par Mather en dynamique Lagrangienne sont des invariants symplectiques. On introduit pour ceci une barriere dans l'espace des phases. Ceci est aussi l'occasion d'´ ebaucher une théorie d'Aubry-Mather pour des Hamiltoniens non convexes. Abstract : We prove that the Aubry and Mañé sets introduced by Mather in Lagrangian dynamics are symple...

متن کامل

Aubry-Mather Theory and Periodic Solutions of the Forced Burgers Equation

Consider a Hamiltonian system with Hamiltonian of the form H(x, t, p) where H is convex in p and periodic in x, and t and x ∈ R. It is well-known that its smooth invariant curves correspond to smooth Z-periodic solutions of the PDE ut +H(x, t, u)x = 0 . In this paper, we establish a connection between the Aubry-Mather theory of invariant sets of the Hamiltonian system and Z-periodic weak soluti...

متن کامل

Aubry Sets Vs Mather Sets in Two Degrees of Freedom

Let L be an autonomous Tonelli Lagrangian on a closed manifold of dimension two. Let C be the set of cohomology classes whose Mather set consists of periodic orbits, none of which is a fixed point. Then for almost all c in C, the Aubry set of c equals the Mather set of c.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009